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Flatbands are receiving increasing theoretical and experimental attention in the field
of photonics, in particular in the field of photonic lattices. Flatband photonic lattices
consist of arrays of coupled waveguides or resonators where the peculiar lattice geom-
etry results in at least one completely flat or dispersionless band in its photonic band
structure. Although bearing a strong resemblance to structural slow light, this indepen-
dent research direction is instead inspired by analogies with “frustrated” condensed
matter systems. In this Perspective, we critically analyze the research carried out to
date, discuss how this exotic physics may lead to novel photonic device applications,
and chart promising future directions in theory and experiment. © 2018 Author(s).
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I. INTRODUCTION

Analogies between electronic condensed matter systems and optics attract widespread attention
nowadays, underlying much research in photonics. Prominent examples where such analogies have
been fruitfully developed include photonic crystals,1 random lasers,2 and photonic topological insu-
lators.3 In this Perspective, we would like to introduce and flatter a new member of this growing
family: photonic flatbands.

Flatband lattices—periodic media with at least one completely dispersionless Bloch band—have
been known since the 1980s,4–7 but at the time many dismissed them as either pathological (requiring
an intricate lattice design and being unstable against perturbations) or trivial (within an ideal flatband,
all states are degenerate, so there are no dynamics). Indeed, the most obvious way to create a flatband
is to take the Hamiltonian of any periodic system, compute its band structure, and divide it by the
wavevector-dependent energy of one of its bands. While the newly obtained Hamiltonian will have
a perfectly flat energy band, when Fourier transformed back to real space, it will typically have a
complicated structure including fine-tuned long range couplings and be dismissed by anyone looking
for proper candidate models to fabricate.

More recently, however, interest in flatbands has been rekindled in various areas of physics,
including cold atoms, electronic condensed matter systems, and photonics, since the community
became aware of a growing number of examples of simpler flatband models with short range con-
nectivities; advanced fabrication techniques allow these “pathological” models to finally be realized
in the laboratory. Moreover, they can display fascinating behavior when perturbations such as inter-
actions are introduced. The last five years have seen several workshops and meetings dedicated to
flatband phenomena,8–11 and this trend is bound to continue in concert with experimental advances.
We recently published a more general review article briefly recounting the exploration of artificial
flatbands in various areas of physics since the 1980s.12 This focus of the present article is to provide
a more comprehensive discussion of details specific to photonics and our opinion on where this field
is headed.

Within photonics, studies of flatbands have largely been focused on exploring their fundamental
properties. For this research area to blossom into something of wider interest, a pressing issue is to
explore potential applications of flatbands such as slow light or novel photonic crystal fibres, which are
outside our direct expertise. Therefore, our aim here is to summarise the theoretical and experimental
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progress to date and discuss some open research directions to encourage other researchers to attack
in these directions.

We begin in Sec. II with a brief review of the theory behind flatband lattices and their interesting
properties. Next, in Sec. III, we evaluate the three settings in photonics where the most experimental
progress has been made to date—waveguide arrays, exciton-polaritons in structured microcavities,
and metamaterials—and suggest future directions which we believe are most promising to pursue
with each. In Sec. IV, we advertise experimental platforms which are now ripe for implementing
flatbands and also hold promise for device applications: coupled resonator lattices, photonic crystals,
and superconducting microwave circuits. Section V concludes the article.

II. THEORY

Wave propagation in periodic media can be characterised by the Bloch band structures !
m

(k),
where the eigenmode frequency (energy) ! depends on a continuous crystal momentum k and a
discrete band index m. By tuning the properties of the periodic medium, one can control the dispersion
relation !

m

(k), related quantities such as the wave group velocity, 3
G

⌘ rk!m

, and induce geometric
and topological phases for light.3,13 One of the most striking effects resulting from periodicity is the
presence of local extrema in the dispersion relation, where the group velocity vanishes, 3

G

! 0. Such
extrema are associated with slow light and wave localization.

There are two conventional approaches for achieving the vanishing group velocity using periodic
photonic media. The first is based on photonic bandgaps occurring in the vicinity of the Bragg
resonances of periodic structures forming photonic crystals.1 In a bandgap, no propagating waves
are supported, which allows defects within the structure to host localized modes and trap light, the
basis for photonic crystal waveguides. In the vicinity of the band edges, the propagating waves’ group
velocity approaches zero, resulting in structurally induced slow light (in contrast to intrinsic slow
light, e.g., electromagnetically induced transparency).14,15 As a resonant scattering process between
the forward- and backward-traveling Bloch waves, these effects are limited to a narrow range of
wavevectors close to a reciprocal lattice vector. With this approach, the degree of localization or
group velocity reduction can be improved by increasing the dielectric contrast of the structure, which
couples forward and backward waves more strongly.

The second class of conventional structural slow light systems is based on coupled waveguides
or resonators. Each individual element or “site” hosts localized modes, forming a photonic lattice

16,17

with a period (at least for dielectric structures) much larger than the operating wavelength, on the
order of tens to hundreds of micrometers for optical wavelength devices (c.f. photonic crystals with
periodicity on the order of hundreds of nanometers). Such photonic lattice-based approaches can
reduce the group velocity over the entire Brillouin zone because they are not limited to the Bragg
resonance; the group velocity reduction is enhanced by coupling the individual elements more weakly.
On the other hand, there is a clear trade-off between this group velocity reduction and the operating
bandwidth; the operating bandwidth is proportional to the coupling strength. In fact, under fairly
general assumptions, quantitative bounds to slow light in both classes of systems can be derived,
assuming one-dimensional propagation.18

Flatband lattice-based wave localization or slow light can be considered a hybrid of the
above approaches that is possible in 2D or quasi-1D systems. In a flatband lattice, the vanishing
group velocity is induced by interference between two or more channels or propagation paths,
with the Bragg resonance condition effectively satisfied transverse to the propagation direction.
This results in a distinctly different behavior compared to the conventional photonic crystal- or
lattice-based approaches. For example, the energy of the flatband Bloch waves is completely inde-
pendent of their wavevector k, resulting in macroscopic degeneracy. While all flatbands necessarily
have the same trivial dispersion relation !(k) = constant, interestingly they do not all behave
qualitatively the same. In fact, for practical reasons, flatbands can be grouped into three distinct
types:

1. “Symmetry-protected” flatbands, corresponding to localized “dark” states decoupled from
propagating channels

2. “Accidental” flatbands formed by fine-tuning of system parameters



070901-3 D. Leykam and S. Flach APL Photonics 3, 070901 (2018)

3. “Topologically protected” flatbands, which are robust under perturbations to coupling parame-
ters

These different types of flatbands are distinguished by considering the properties of their eigen-
states. In conventional periodic media, the energy eigenstates are the delocalized Bloch waves. Since
in a flatband, all the Bloch waves are degenerate, any superposition of them can also form a valid eigen-
state, and in particular, one can construct localized eigenstates; they are localized by interference,
even in the absence of any disorder or confining potential.

A natural question arises: what are the smallest possible eigenstates that can be constructed in a
given flatband? The obvious choice would be the band’s Wannier functions, which are exponentially
localized superpositions of all the Bloch waves. In fact, in flatbands, even stronger localization known
as compact localization is possible, with the eigenstate amplitudes strictly vanishing except at a finite
number of unit cells of the structure. The profiles of these compact localized states, e.g., the number
of unit cells U excited by the smallest such state and whether they form a linearly independent set,
can help characterize a given flatband.19,20

The above classifications, while following practical reasons, are missing some mathematical
rigor. For specialists, symmetry-protected flatbands can be replaced by U = 1 flatbands with compact
localized states occupying precisely one elementary unit cell of the lattice, thus forming an orthogonal
set.20 Accidental flatbands can be replaced by U � 2 flatbands with compact localized states extending
beyond one unit cell, thus forming a non-orthogonal set, and sometimes even a linearly dependent
set; they include the line graph models pioneered by Mielke,21 as well as Tasaki’s “decorated”
lattices with a fine-tuned next-nearest-neighbour coupling.22 The “topologically protected” flatbands
occur in systems with a bipartite symmetry such as the Lieb lattice,5 which can be divided into
two sub-systems of different sizes which have no direct coupling between elements within the same
sub-system.

A. Simple examples of flatbands

We now present examples of the three types of flatbands, focusing on the abstract tight binding
or coupled mode Hamiltonians and deferring discussion of photonic realizations to Sec. III.

An example of a symmetry-protected flatband is the quasi-1D cross-stitch ladder, shown in
Fig. 1(a), which is symmetric under reflections about the ladder axis. This can be described by the
tight binding equations,20

�! a

n

= J1( a

n�1 +  b

n�1 +  a

n+1 +  b

n+1) + J2 
b

n

, (1)

�! b

n

= J1( a

n�1 +  b

n�1 +  a
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n+1) + J2 
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n

, (2)

where �! is a detuning with respect to some reference frequency, J1 and J2 are inter- and intra-cell
coupling strengths, and  a

n

and  b

n

are amplitudes on the two legs in the nth unit cell. Transforming
to basis states  +

n

= ( a

n

+  b

n

)/
p

2 and  �
n

= ( a

n

�  b

n

)/
p

2 which are symmetric and antisymmetric
under reflection, the eigenvalue problem simplifies to

�! +
n

= J2 
+
n

+ 2J1( +
n�1 +  +

n+1), (3)

�! �
n

=�J2 
�
n

, (4)

and one can read off the Bloch wave energy eigenvalues as �! = J2 + 4J1 cos(ka) and �! = �J2,
where k is the transverse wavevector and a is the array period. The latter forms the flatband with

FIG. 1. Examples of quasi-1D flatband lattices. (a) Cross-stitch lattice with an inversion symmetry-protected flatband. (b)
Sawtooth lattice with an accidental flatband. (c) Stub lattice with a flatband protected by the topology of the inter-site hoppings.
Circles indicate sites with local field amplitudes  j

n

, and lines indicate nonzero inter-site hopping terms. Sites excited by the
flatband’s compact localized states are highlighted in red and blue, indicating phases of 0 and ⇡, respectively.
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energy independent of k. Tuning the intra-cell hopping J2 preserves the flatband while shifting its
energy with respect to the dispersive band. Perturbations that break the reflection symmetry of the
ladder will couple the two bands and induce dispersion in the flatband.

The sawtooth ladder shown in Fig. 1(b) hosts an accidental flatband. It is described by the tight
binding model,

�! a

n

= J( a

n�1 +  a

n+1 +  b

n�1 +  b

n

), (5)

�! b

n

=M b

n

+ J( a

n

+  a

n+1), (6)

where M is a detuning of the b site energies. Both energy eigenvalues,

�! =
M

2
+ J cos(ka) ±

q
2J

2 + (M/2)2 + J cos(ka)(J cos(ka) + 2J �M), (7)

typically depend on k. However, at the critical detuning M = �J, the term inside the square root
of Eq. (7) becomes the perfect square (J cos(ka) + M/2 + 2J)2, resulting in a flatband with energy
�! = �2J. Actually, this flatband is not an isolated example but forms a parametric family under
variation of the relative strengths of the inter- and intra-leg hopping terms. With fine-tuning of
parameters, one can obtain similar flat or nearly flatbands in multi-mode Hamiltonians.23,24

The third class of “topologically protected” flatbands occurs in bipartite systems, which can be
divided into two classes of sublattices, called “majority” and “minority.” Sites belonging to each are
not directly coupled to one another; hopping between majority sites can only occur via a minority site,
and vice versa. This imbues a chiral symmetry on the Hamiltonian: for each mode with energy �!,
there is a mode with energy ��!. Consequently, the excess modes of the majority lattice must lie at
�! = 0, forming a flatband.25 Moreover, the chiral symmetry and flatband persist even under disorder
to the coupling strengths J ! J

n

; the flatband is protected by the connectivity of the sublattices, not
the precise values of the coupling strengths. An example of such a bipartite lattice is the stub lattice,
shown in Fig. 1(c) and described by the tight binding model,

�! a

n

= J1 
b

n

, (8)

�! b

n

= J1 
a

n

+ J2 
c

n�1 + J3 
c

n

, (9)

�! c

n

= J2 
b

n+1 + J3 
b

n

(10)

with the energy eigenvalues �! = 0,±
q

J

2
1 + J

2
2 + J

2
3 + 2J2J3 cos(ka) including the promised flatband

which is independent of the coupling strengths J1,2,3.
Figure 1 also shows the compact localized states support by each type of flatband. For the

symmetry-protected flatband, the decoupled antisymmetric states are independent of k, such that
the Wannier functions and compact localized states are identical, residing in a single unit cell; the
flatband can therefore be considered as a simple array of independent bound states in the continuum.26

In accidental and topologically protected flatbands, the Bloch wave profiles depend on k such that
the Wannier functions are only exponentially localized, and the compact localized states excite a
minimum of two unit cells. This means that local perturbations, e.g., induced by nonlinearities, will
typically couple different compact localized states, enabling novel interaction-induced wave transport
regimes and, in quantum systems, interesting many-body quantum phases. On the other hand, the
symmetry-protected flatband transport can only be mediated by first coupling into dispersive waves,
resulting in a simpler behavior. In other examples, particularly in higher dimensional flatband lattices,
the minimal compact localized states can span several unit cells.

III. EXPERIMENTS WITH PHOTONIC FLATBANDS

We now discuss how the abstract models presented above have been realized in various
experiments and some potential applications of flatbands and their peculiar localized eigenstates.

A. Waveguide arrays

In optical waveguide arrays, the propagation direction is fixed, with the distance along the
propagation axis playing the role of “time,” and the evolution of the field in the transverse plane is of
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primary interest. For the commonly used case of weak refractive index modulations, light propagation
in waveguide arrays is described by the paraxial wave equation for the field envelope  (x, y, z) slowly
varying along the waveguide axis z,

i@
z

 =

"
� 1

2k0
r2
? �

k0

n0
�n

#
 , (11)

where k0 = 2⇡n0/� is the wavenumber, n0 is the ambient refractive index,r? = @2
x

+ @2
y

is the transverse
Laplacian, and �n describes the index profile of the waveguide array. Popular methods to create a
desired 2D [�n =�n(x, y)] or 3D [�n =�n(x, y, z)] index modulation are optical induction27 and direct
laser writing.16 The latter has the advantage of allowing precise fine-tuning of the lattice geometry
and inter-waveguide coupling strengths, allowing fabrication of many quasi-1D and 2D flatband
lattices.

We stress that in this setting, the eigenvalue problem Eq. (11) is for the propagation constant k

z

,
i.e., one looks for propagation-invariant eigenstates  (z)= 0e

�ik

z

z at a fixed frequency ! = 2⇡c/�.
Here k

z

plays the role of “energy” instead of the mode frequency; therefore, flatbands in paraxial
waveguide arrays do not lead to genuine slow light but rather suppression of transverse diffraction.

When neighbouring waveguides are weakly coupled, a tight binding approximation can be
applied and continuous Eq. (11) reduces to discrete tight binding equations similar to those pre-
sented in Sec. II, with the waveguide separation controlling the effective coupling strengths J

n

. The
waveguide depth (detuning) can also be tuned independently, providing great flexibility in the real-
ization of 1D or 2D tight binding models with short range couplings and allowing demonstration of
various quantum-optical analogies.28

In fact, the first demonstrations of flat dispersion in waveguide arrays were based on an analogy
with the dynamic localization of electrons under high-frequency electric fields,29 which is mimicked
by a uniform periodic z modulation of the waveguide positions, e.g., �n = �n(x � x0(z)), where x0(z)
is the modulation profile.30 Under this high-frequency driving, the effective coupling strength J is
renormalized to Jeff = J s L

0 dz exp[�i�@
z

x0(z)], where L is the modulation period and � is a constant
dependent on the lattice period and operating wavelength. By careful tuning of the modulation
parameters, one can achieve Jeff = 0, resulting in a completely flat transverse dispersion relation
and restoration of the optical field to its initial profile at integer multiples of the modulation period.
Optimizing the modulation profile x0(z), broadband and two-dimensional dynamic localization have
also been demonstrated.31–33

The first demonstrations of a static flatband lattice Hamiltonian in waveguide arrays were based
on the laser-written 2D Lieb lattice shown in Fig. 2.34–36 Its flat or dispersive band states can be

FIG. 2. Laser-written photonic Lieb lattice hosting a flatband. [(a) and (b)] Transverse profiles of the multi-waveguide input
states. In (a), the phase is uniform, resulting in excitation of dispersive bands. In (b), the phase is staggered, alternating between
0 (orange) and ⇡ (blue), exciting the flatband. (c) Dynamics are probed by propagation of the input states along the array (z)
axis. [(d) and (e)] Experimentally measured output intensity profiles adapted from R. A. Vicencio et al., Phys. Rev. Lett. 114,
245503 (2015). Copyright 2015 American Physical Society. (d) Strong diffraction is seen for the dispersive band input (a). (e)
The compact localized state (b) remains propagation invariant.
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selectively excited by tuning the phase of the input beam  (x, y, 0) that excites waveguides of the
majority sublattice formed by the “edge” sites which lie between the “corner” sites. After propagation
through the array, a dispersive band wavepacket will experience dephasing between its different
transverse wavevector components k

z

= k

z

(k
x

, k

y

), resulting in diffraction and the delocalized output
state such as the one shown in Fig. 2(d). On the other hand, within the nearest neighbour tight binding
approximation, the flatband states remain propagation invariant and the input state is preserved, see
Fig. 2(e). The Lieb lattice flatband is protected by the topology of the inter-site couplings and not their
precise strengths, and the robustness of the flatband to coupling disorder (introduced by misalignment
of the waveguide positions) was demonstrated by Mukherjee et al.

36

The original publications observing compact localized states in the Lieb lattice attracted
widespread interest, and demonstrations of compact localized states in several other 2D lattices,37,38

quasi-1D lattices,39–42 and higher waveguide modes43 quickly followed suit. Among these, an espe-
cially active area has been the exploration of flatbands in periodically driven Floquet lattices in
1D44 and 2D.45,46 Floquet lattices generalize the dynamic localization approach discussed above to
have independent control over the individual waveguide positions and depths, allowing realization
of near-arbitrary time-dependent Hamiltonians described by Floquet band structures. For example,
carefully tuned driving can produce an effective magnetic flux and induce a completely flat spec-
trum, despite the effective inter-waveguide couplings remaining nonzero. This peculiar magnetic
field-induced localization, known as the Aharonov-Bohm caging,47 was very recently observed in
two experiments.48,49

Two proposed applications of these waveguide arrays are quantum simulation of strongly cor-
related states of matter and prototyping novel designs for optical fibres and photonic bound states in
the continuum, where the non-diffracting nature of the compact localized states may be useful for
suppressing unwanted cross talk between different channels within a photonic crystal fibre.35

Presently, optical waveguide arrays are effectively limited to probing linear dynamics. In prin-
ciple, the nonlinear propagation regime in laser-written structures is accessible by probing the
system with a pulsed laser, and discrete solitons were already observed by Szameit et al. in sim-
ple square lattices more than 10 years ago.50,51 However, in practice the probe power is limited by the
need to avoid the inducing material damage. Szameit et al. circumvented this by fabricating arrays
with a very weak coupling, which lowers the power required but limits the nonlinear dynamics to
short effective propagation lengths, making it hard to distinguish between the flat and dispersive
bands.

While optically induced lattices can display a much stronger nonlinear response observable
with continuous wave beams,27 a weak inter-waveguide coupling is also required to minimize the
unwanted next-nearest neighbour hopping and ensure faithful induction of the flatbands. Hence, any
nonlinear dynamics are similarly limited to rather short propagation distances.

Therefore, simulating novel strongly interacting phases of matter with the existing flatband
waveguide arrays remains challenging, and novel approaches such as state recycling to increase the
effective propagation length,52 inclusion of nonlinear dopants,53 or laser-writing in highly nonlinear
materials such as chalcogenides54 will need to be explored to make further progress in this direction.

On the other hand, in the linear regime, there are still several directions that deserve further
attention, including the Landau-Zener tunneling between flat and dispersive bands,55–57 disorder-
induced dephasing of flatband states,58 propagation of entangled states of light,59 and non-Hermitian
or parity-time symmetric flatband lattices,60–67 which can be implemented passively by rapidly bend-
ing the waveguides to induce loss.68 Research along these lines, while not expected to directly lead
to technological applications, may provide novel insights into other systems such as frustration
in condensed matter,69 optically driven electronic flatbands, or novel designs for photonic crystal
fibres.

B. Exciton-Polaritons

Exciton-polaritons are quasiparticles arising from a strong light-matter coupling in semicon-
ductor microcavities. The low effective mass provided by their photonic component combined
with an exciton-mediated nonlinear response is ideal for demonstrating effects such as the Bose-
Einstein condensation and low-power optical switching. There are a variety of methods to induce
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structured potentials for the exciton-polaritons, allowing the creation of periodic lattices and
flatbands.70

Compared to waveguide arrays, a distinguishing feature of exciton-polaritons is their finite
lifetime, caused by the exciton recombination and leakage of photons from the cavity, forming a
driven-dissipative system. In the presence of incoherent optical pumping, the time evolution of the
polariton condensate wavefunction  is governed by the nonlinear Schrödinger equation,70
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where m is the polariton effective mass, g

c

and g

R

are polariton-polariton and polariton-reservoir
interaction strengths, n

R

is the reservoir density, U(r) is the lattice potential, R is the stimulated
scattering rate, � and �

R

are polariton and reservoir exciton loss rates, and P(r) is the spatial profile
of the optical pump.

At low pump powers, below the condensation threshold, the polariton density term | |2 is negli-
gible and the linear band structure of Eq. (12) can be measured from the photoluminescence spectrum
of the microcavity. The first successful application of this approach to flatbands was reported in 2014
by Jacqmin et al., using a honeycomb lattice formed by etched micropillars.71 They found that the
higher P-orbital bands of the micropillars could be described by a kagome lattice-like tight binding
model and observed its flatband and the real-space Bloch wave profiles and in a later publication
observed corresponding edge states.72 We note that an earlier kagome lattice structure fabricated
using metallic film deposition by Masumoto et al. was not sufficiently deep to allow resolution of the
flatband.73

At higher pump powers, condensation occurs and interesting interaction effects induced by the
nonlinear terms of Eq. (12) become observable. However, under off-resonant pumping, one cannot
directly control into which state the system condenses; in the above examples, condensation into a
dispersive band was observed rather than the flatband. Baboux et al. demonstrated a solution to this
problem in 2016,74 using a quasi-1D stub lattice formed by etched micropillars shown in Fig. 3(a). In
the stub lattice, the flatband is sandwiched between two dispersive bands, as shown in the measured
photoluminescence spectrum in Fig. 3(b). By changing the spatial structure of the optical pump,
Baboux et al. could control the relative gain of the dispersive and flatband states. In particular, with a
uniform pump, condensation into the upper dispersive band was observed [Fig. 3(c)], while a pump
localized to only the sublattice of “A” pillars produced condensation into the flatband [Fig. 3(d)].
Notably, one can see in Figs. 3(c) and 3(d) that the dispersive band condensate is delocalised in
real space, remaining coherent over many lattice sites, while the flatband fragments into multiple

FIG. 3. Flatbands in coupled micropillar cavities, adapted from F. Baboux et al., Phys. Rev. Lett. 116, 066402 (2016).
Copyright 2016 American Physical Society. (a) Coupled cavities formed by quantum wells (QWs) embedded between the
distributed Bragg reflectors (DBRs). (b) Photoluminescence (PL) spectrum of a uniformly pumped array, revealing a flatband
sandwiched between two dispersive bands. [(c) and (d)] Position-resolved emission spectrum of the condensates formed at
high pump powers. (c) In a uniformly pumped array, condensation occurs into a single delocalized dispersive band state,
maintaining phase coherence across many periods of the lattice. (d) When the pump is shaped to only excite the A sublattice,
condensation into compact localized flatband states is favoured. Disorder lifts the degeneracy between different compact
localized states, forming many mutually incoherent condensates with energies dependent on the local disorder potential.
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incoherent compact localized states, with their energy degeneracy lifted by the intrinsic disorder of
the lattice.

Two groups subsequently observed condensation into the flatbands of a 2D Lieb lattice, sim-
ilarly observing fragmentation of the condensate by disorder.75,76 In 2D lattices, the inter-site
coupling strength becomes polarization-dependent, producing an effective spin-orbit coupling.77

Consequently, the flatband condensates exhibit nontrivial polarization textures in their emission spec-
tra. In the future, this combination of spin-orbit coupling, interactions, and frustrated lattice geometries
is anticipated to allow the simulation of novel strongly correlated magnetic phases. For example, clas-
sical XY and Ising Hamiltonians have now been simulated on small lattices and plaquettes,78,79 and
the main challenge is to scale up to extended flatband lattices.

Another interesting avenue for future experiments is the behavior of the above flatbands under
resonant optical pumping.80–82 While transport is completely suppressed in a non-interacting flatband,
interactions can induce transport resulting in long range correlations80 and multiphoton states at the
nominally dark sites neighbouring the compact localized states81,82 under a pump resonant with the
flatband.

In all cases, such strongly correlated states must compete with disorder, which favours the
formation of incoherent fragments instead of a long range order. In principle, structured optical
pumping can be used to compensate for the disorder via the polariton-reservoir interaction term in
Eq. (12), although this may be difficult in practice. At the same time, the interaction strength should
exceed the polariton lifetime, which requires high quality factor microresonators. Another challenge
here is that methods required to create deep polariton potentials, such as etching, inevitably introduce
additional losses.70 Nevertheless, polaritons remain the most promising avenue for exploring strong
interaction effects in photonic flatbands.

Finally, the interplay between non-Hermiticity and flat dispersion has scarcely been explored in
this setting, with the exception of Ref. 74. In addition to the references mentioned above,60–67 the
pump-induced gain in flatband lattices can be used to realize novel lasing regimes.83,84

C. Metamaterials

While waveguide arrays and exciton-polariton condensates may be the better-known examples of
photonic flatbands, they have also been realized with two classes of 2D metamaterials: spoof plasmons,
and all-dielectric zero-index metamaterials. What distinguishes flatband states from conventional
“dark” modes of metamaterials are that the latter can be localized to a single element (i.e., decoupled
by symmetry, analogous to the U = 1 cross-stitch lattice), while localization in nontrivial flatbands
of class U > 1 is a collective effect; the compact localized states cannot be reduced to a single unit
cell. Consequently, the flatband Bloch modes acquire a strong k-dependence.85

The group of Kitano has performed experiments with terahertz spoof plasmons in kagome and
Lieb lattices fabricated from etched steel sheets.86–88 They considered 2D flatband lattices forming
metasurfaces which are probed at oblique incidence, as shown in Fig. 4(a). Inside (outside) the light
line, the flatband hosts an angle-independent transmission minimum (reflection maximum), with
the quality factor of the flatband states being sensitive to the input angle. In particular, at normal
incidence, the flatband modes become “dark” states completely decoupled from the incident beam.
The corresponding experimentally measured transmission and reflection spectra for the Lieb lattice are
shown in Fig. 4(b), where the next-nearest-neighbour coupling unflattens the band at large incidence
angles.

Concurrently, in 2011, Huang et al. introduced a class of zero-refractive-index all-dielectric
metamaterials based on fine-tuning to induce degeneracy between dipolar and monopolar modes in
a square lattice of dielectric rods, producing an intersection between flat and conical bands which
resembles the dispersion of the Lieb lattice.89 This original microwave experiment has attracted
significant interest and has now been scaled up to optical frequencies.90,91 In these experiments,
propagation is confined to the plane of the 2D lattice and the zero effective refractive index conical
bands mediate near-unity transmission for normally incident beams, even in the presence of obstacles
or corners. Excitation at oblique incidence, however, results in an unwanted reduction in transmission
and loss of zero-index behavior due to the excitation of flatband modes, which is enabled by the band
not being perfectly flat.92
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FIG. 4. Lieb lattice for spoof surface plasmons. (a) Schematic of the scattering experiments. The input beam is incident at
a variable angle with respect to the plane of the lattice. (b) Measured transmission and reflection as a function of frequency
and input angle with respect to the X (kk /kX

) and M (kk /kM

) points of the Brillouin zone, reproduced with permission from
S. Kajiwara et al., Phys. Rev. B 93, 075126 (2016). Copyright 2016 American Physical Society. The transmission minimum
(inside the light line) and maximum (outside the light line) correspond to excitation of the flatband modes.

Presently, these metamaterial studies are relatively disconnected from the flatband literature
discussed in Secs. II, III A and III B, and it is interesting (for us, at least) to offer some poorly
informed speculation as to how those results may be applied here. For example, the role of the flatband
class, e.g., its effect on the quality factor of the dark modes, has not been systematically studied nor
have the exact differences between compact localized flatband states and conventional dark modes.

Closely related to the above experiments is the concept of “resonant guided wave networks,”
which were introduced by Feigenbaum and Atwater in 201093,94 and demonstrated in small plasmonic
networks in 2014.95 Wave localization in these networks resembles localization in “topologically
protected” flatbands such as the Lieb, dependent only on the local connectivity between different
waveguides. It would be interesting to explore this analogy further.

Introducing localized defects to a zero index metamaterial will couple the flatband states to
the dispersive bands and may induce strong Fano resonances. Another interesting question is how
the behavior of such defects compares to the recently demonstrated “doping” of epsilon-near-zero
media:96 both can be considered a localized perturbation to an otherwise zero index effective medium.

Finally, in 2012 Nakata et al.

97 proposed flatbands in metamaterials modelled as inductor-
capacitor circuits, such as transmission line metamaterials. In contrast to the standard tight binding
approach, tightly bound eigenmodes at individual lattice sites are not required, allowing realiza-
tion of flatband models with longer range couplings such as the seminal “decorated” lattice models
first studied by Tasaki in 1992.22 These models are presently inaccessible with waveguide arrays and
exciton-polaritons, which are limited to tight binding models with short-ranged evanescent couplings.
To our knowledge, flatbands based on circuit or transmission line metamaterials have not yet been
observed.

IV. FUTURE DIRECTIONS

We now turn to platforms where flatbands have not been extensively explored yet, but we believe
they deserve more attention in the future.

A. Coupled resonator lattices

Coupled resonator lattices can be implemented using various methods, such as arrays of defects
in photonic crystals98,99 and coupled microring resonators.100,101 Propagation is governed by tight
binding models similar to those appearing in Sec. II in the limit of weak inter-resonator coupling, and
in general by transfer matrices.102 However, we are not aware of any experimental demonstrations of
flatbands in this platform to date; most studies have focused on the characterization and optimization
of the simple Bravais lattices.

A notable exception is the 2013 paper by Hafezi et al.,103 which considered a bipartite lattice
of ring resonators shown in Fig. 5(a) consisting of resonant site rings coupled by off-resonant link
rings. While the focus of Ref. 103 was to demonstrate topological edge states, the lattice used bears
a striking resemblance to the 2D Lieb lattice of Fig. 2 and therefore shows promise for implementing
flatbands. In fact, a similar design proposed by Zhu et al.

104 early this year based on a bipartite
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FIG. 5. Novel platforms for exploring photonic flatbands. (a) Coupled resonator lattices. Top: Lieb-like lattice formed by
detuned “site” (blue) and “link” (red) rings. Bottom: scanning electron microscope image of the lattice, adapted from M.
Hafezi et al., Nat. Photonics 7, 1001 (2013). Copyright 2013 Macmillan Publishers Limited. (b) Photonic crystals. Top:
Simulated band structure of 1D photonic crystal waveguide formed by removing a row of holes from kagome photonic crystal.
a = 500 nm is the hole spacing. Gray shaded regions are bulk bands, and curves indicate defect modes. Flatband modes in the
guided region outside the light line (purple) are highlighted in red and cyan. Bottom: Fabricated photonic crystal membrane.
Adapted from S. A. Schulz et al., Opt. Lett. 42, 3243 (2017). Copyright 2017 Optical Society of America. (c) Microwave
circuit QED. Top: Space-resolved imaging of a dispersive band eigenstate of a kagome lattice of 49 coupled microwave
resonators. Bottom: Picture of the device. Adapted from D. L. Underwood et al., Phys. Rev. X 6, 021044 (2016). Published
by the American Physical Society under the Creative Commons Attribution 3.0 License.

honeycomb lattice supports a nearly flatband co-existing with topological edge states. We believe
this is an exciting development.

In another recent theoretical study by one of us,105 we found that off-resonant link rings can
implement a strong next-nearest neighbour coupling, which would allow models such as the cross-
stitch or sawtooth of Fig. 1(a) to be realized. This approach could be further generalized to longer
range couplings, to implement Tasaki’s decorated lattice models.22

A pressing issue important for potential applications of resonator flatbands is to understand
how the reduced group velocity in flatband resonator lattices compares to the traditional approaches
for achieving structural slow light based on weakly coupled resonators. The interesting potential
advantage offered by flatbands is that the group velocity 3

G

can be tuned independently of the bare
coupling strength J, allowing more flexibility to optimize parameters to minimize unwanted effects
such as two-photon absorption or disorder-induced localization and dephasing. Moreover, the high
light intensities accessible in coupled resonator lattices provide a promising setting for exploring
interaction and quantum effects in flatbands.

Moving beyond Hermitian limits, coupled optical resonators provide a novel setting for re-
examining lasing in frustrated lattice geometries. The original experiment by Nixon et al.

83 in 2013
required intricate alignment of a single cavity, patterning holes in the cavity mirrors to induce a
flatband lattice. Using integrated resonator arrays would allow frustrated lasing to be studied in a
more stable platform. We note that lasing in topological microring resonator arrays was demon-
strated last year,106–109 but the behavior of flatband arrays remains completely unexplored. Will the
resulting lasing mode display long range correlations similar to those observed in Ref. 83, or will
disorder inevitably result in short range-correlated, multimode lasing? Driven-dissipative flatbands in
integrated photonics are a largely unexplored area that deserves future theoretical and experimental
studies.

B. Photonic crystals

The first flatband-inspired photonic crystal slab design by Takeda et al. in 2004 consisted of a
2D kagome lattice of high-index dielectric rods well approximated by a tight binding model.110 Their
selling point was the isotropic response of their design at the flatband frequency; at this frequency,
any wavevector can be resonant with a Bloch mode. However, this proposal received little attention
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compared to air hole structures, which were much easier to fabricate. For several years, designers of
flatbands for slow light applications mainly focused on the numerical or intuitive optimization of 1D
photonic crystal waveguides.111,112

The recent progress in achieving flatbands with waveguide arrays, exciton-polaritons, and
metamaterials has led to a revival in interest of flatband lattice-inspired designs for photonic crys-
tals.24,113–115 For example, in 2015 Xu et al.

113 applied an optimization procedure to the original
zero-index metamaterial of Ref. 89 to increase the band flatness over the entire 2D Brillouin zone.
Their optimized design consisted of a bipartite lattice of “corner” and “edge” dielectric rods of
different radii, resembling a Lieb lattice. Similarly, Nguyen et al.

24 used the coupled mode theory
to analytically optimize symmetry-breaking to induce an accidental flatband. They experimentally
demonstrated a 1D photonic crystal for near-infrared wavelengths with a flatband formed by fine-tuned
interference between even and odd modes.

Quasi-1D flatband lattices may also inspire novel photonic crystal waveguide designs. A 2017
study by Schulz et al.

114 considered the inverse structure to that of Takeda et al.: a kagome lattice of
air holes in a slab. The kagome lattice can be constructed by removing rods from a regular triangular
lattice, and its band structure is qualitatively understood in terms of a tight binding model for the
missing rods. This approach is therefore intermediate between regular photonic crystals and coupled
resonator lattices formed by arrays of photonic crystal defects.98,99 They found that the enlarged
unit cell not only compresses the bulk bands, reducing their group velocity, but also provides more
degrees of freedom for the optimization of photonic crystal defect waveguides. Figure 5(b) illustrates
their fabricated sawtooth-like defect waveguide formed by removing lines of holes from the structure,
exhibiting two guided slow light modes. However, it is still not clear whether the resulting waveguides
can be related to quasi-1D flatbands or the mechanism is simply the denser band structure created by
the enlarged unit cell. This is a question which deserves further investigation.

Any flatband-based approaches for designing slow light photonic crystal waveguides will of
course need to be judged against traditional approaches and optimization methods.111,112 Compared
to the simplest triangular lattice, typical flatband lattice geometries will have a larger structural period,
resulting in a red shift in the photonic bands for a fixed index contrast and folding of the Brillouin
zone, bringing modes into resonance with the light cone. Likely the improved group velocity offered
in flatband lattice-inspired designs will come at the cost of reduced bandwidth, with their main
advantage likely being reduced group velocity dispersion.

Finally, we note that there are so far no systematic studies of flatbands in three-dimensional
photonic crystals. While challenging to fabricate for optical wavelengths, even demonstrations at
microwave frequencies would open a completely new direction by allowing exploration of effects such
as the disorder-induced inverse Anderson transitions116 which are inaccessible in lower-dimensional
systems and all the other material platforms we have discussed.

C. Microwave circuit QED

The final platform we would like to briefly mention is circuit quantum electrodynamics using
superconducting microwave circuits.117 This setting offers the unique opportunity to explore the
strongly interacting quantum regime of flatbands in photonics, with potential applications includ-
ing quantum simulation and computing. While there have been a few implementations of frustrated
kagome lattices since 2016,118,119 direct imaging of the flatband and its many-body dynamics remains
elusive. A challenge is that experiments must be conducted at cryogenic temperatures and they rely on
indirect measurements of scattering spectra, which makes it especially hard to measure bulk flatband
states and distinguish them from edge resonances. Nevertheless, there has been significant experi-
mental progress in realizing and probing high quality, low disorder lattices approaching hundreds of
sites since 2012.120–122

For example, in 2016, Underwood et al.

118 demonstrated a method to image the interior of 2D
circuit QED lattices. They used a movable probe to induce a weak defect at a single lattice site. They
showed that the influence of this defect on the lattice’s transmission spectrum can be used to indirectly
measure the number of photons at the probed resonator and therefore produce an image of the intensity
throughout the lattice. Figure 5(c) illustrates the application of this method to reconstruct the profile
of a dispersive band eigenstate in a 49 site kagome lattice. One limitation of this approach that will
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need to be solved in the future is that the imaging is based on measuring the transmission spectrum.
Since the flatband states exhibit poor transmission, they will be limited to a poor signal-to-noise ratio;
Underwood et al. did not present any measurements of flatband states using this technique.

In the meantime, there have been several theoretical studies studying the phase transitions,
interactions, the role of dissipation, and quantum correlations in circuit QED flatbands,80–82,123–126

largely focusing on small quasi-1D systems which remain numerically tractable in the quantum many-
body regime. As imaging methods improve, we hope some of these effects will become observable
in the near future.

One novel advantage offered by circuit QED is that the inter-site coupling strength becomes
independent of the physical distance between the lattice sites. This enables the realization of exotic
tight binding models, such as the kagome lattice on curved space, where it was shown that curvature
can gap the flatband.119 Using a similar approach, it should also be possible to experimentally observe
flatbands in aperiodic networks such as the Penrose lattice.7

V. CONCLUDING REMARKS

In all the photonic systems we have discussed, flatbands represent an ideal limit. Disorder, sys-
tematic errors in fabrication, or corrections beyond the commonly used tight binding approximation
will inevitably induce perturbations and introduce a cutoff to the flatband phenomena of interest, e.g.,
by inducing slight dispersion or the Anderson localization. Nevertheless, we strongly believe that
this ideal is worth pursuing, not only as a means of characterizing fabrication methods and sources of
imperfections but also because of their potential for demonstrating novel phases of light using flat-
bands and perhaps eventually device applications such as lasers, amplifiers, or quantum light sources.
We therefore hope that the interesting open problems we have highlighted in this Perspective will
convince others to go flat out with studying photonic flatbands.
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and R. A. Vicencio, “Observation of ground and excited flat band states in graphene photonic ribbons,” New J. Phys. 20,
033028 (2018).

44 S. Mukherjee and R. R. Thomson, “Observation of robust flat-band localization in driven photonic rhombic lattices,”
Opt. Lett. 42, 2243 (2017).

45 L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, “Observation of photonic anomalous Floquet topological
insulators,” Nat. Commun. 8, 13756 (2017).

46 S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Öhberg, N. Goldman, and R. R. Thomson, “Experimental
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S. Höfling, “Polariton condensation in S- and P-flatbands in a two-dimensional Lieb lattice,” Appl. Phys. Lett. 111, 231102
(2017).

76 C. E. Whittaker, E. Cancellieri, P. M. Walker, D. R. Gulevich, H. Schomerus, D. Vaitiekus, B. Royall, D. M. Whittaker,
E. Clarke, I. V. Iorsh, I. A. Shelykh, M. S. Skolnick, and D. N. Krizhanovskii, “Exciton-polaritons in a two-dimensional
Lieb lattice with spin-orbit coupling,” Phys. Rev. Lett. 120, 097401 (2018).

77 V. G. Sala, D. D. Solnyshkov, I. Carusotto, T. Jacqmin, A. Lemaitre, H. Tercas, A. Nalitov, M. Abbarachi, E. Galopin,
I. Sagnes, J. Bloch, G. Malpuech, and A. Amo, “Spin-orbit coupling for photons and polaritons in microstructures,”
Phys. Rev. X 5, 011034 (2015).

78 N. G. Berloff, M. Silva, K. Kalinin, A. Askitopoulos, J. D. Töpfer, P. Cilibrizzi, W. Langbein, and P. G. Lagoudakis,
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